首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4456篇
  免费   699篇
  国内免费   541篇
  2024年   2篇
  2023年   202篇
  2022年   128篇
  2021年   223篇
  2020年   287篇
  2019年   324篇
  2018年   271篇
  2017年   274篇
  2016年   280篇
  2015年   224篇
  2014年   249篇
  2013年   319篇
  2012年   231篇
  2011年   220篇
  2010年   186篇
  2009年   226篇
  2008年   250篇
  2007年   239篇
  2006年   215篇
  2005年   149篇
  2004年   138篇
  2003年   127篇
  2002年   146篇
  2001年   143篇
  2000年   107篇
  1999年   95篇
  1998年   101篇
  1997年   71篇
  1996年   74篇
  1995年   40篇
  1994年   35篇
  1993年   16篇
  1992年   16篇
  1991年   10篇
  1990年   4篇
  1989年   13篇
  1988年   7篇
  1987年   7篇
  1986年   9篇
  1985年   6篇
  1984年   2篇
  1983年   4篇
  1982年   6篇
  1981年   6篇
  1980年   5篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1972年   1篇
  1958年   3篇
排序方式: 共有5696条查询结果,搜索用时 15 毫秒
1.
2.
Differences in δ13C and δ15N values in stream biota are caused by several environmental conditions. Variations in abundance, species richness and the assemblage structure of stream biota are also caused by several environmental conditions. Hence, abundance, species richness and the assemblage structure of stream biota are expected to be strongly correlated with the differences in value of stable isotopes. In this study, the gaps in δ13C and δ15N between periphyton and charr are discussed in terms of the abundance, genus richness, and assemblage of benthic invertebrates at each site. Gaps in δ13C between periphyton and charr were strongly correlated with some aspects of mountainous area and the genus richness of benthic invertebrates at each site. The gaps in δ15N between periphyton and charr were strongly correlated with the abundance and assemblage structure of benthic invertebrates at the location tested. The δ13C values of predators were correlated with some aspects of mountainous area and the assemblage structure of the benthic invertebrates. The δ15N values of predators were correlated with genus richness and the assemblage structure of the benthic invertebrates. These results suggest that the value gaps in δ13C and δ15N can be used to assess biodiversity and could provide indices for estimating the biodiversity in a stream.  相似文献   
3.
Genetically modified plants are widely grown predominantly in North America and to a lesser extent in Australia, Argentina and China but their regions of production are expected to spread soon beyond these limited areas also reaching Europe where great controversy over the application of gene technology in agriculture persists. Currently, several cultivars of eight major crop plants are commercially available including canola, corn, cotton, potato, soybean, sugar beet, tobacco and tomato, but many more plants with new and combined multiple traits are close to registration. While currently agronomic traits (herbicide resistance, insect resistance) dominate, traits conferring “quality” traits (altered oil compositions, protein and starch contents) will begin to dominate within the next years. However, economically the most promising future lies in the development and marketing of crop plants expressing pharmaceutical or “nutraceuticals” (functional foods), and plants that express a number of different genes. From this it is clear that future agricultural and, ultimately, also natural ecosystems will be challenged by the large-scale introduction of entirely novel genes and gene products in new combinations at high frequencies all of which will have unknown impacts on their associated complex of non-target organisms, i.e. all organisms that are not targeted by the insecticidal protein. In times of severe global decline of biodiversity, pro-active precaution is necessary and careful consideration of the likely expected effects of transgenic plants on biodiversity of plants and insects is mandatory.In this paper possible implications of non-target effects for insect and plant biodiversity are discussed and a case example of such non-target effects is presented. In a multiple year research project, tritrophic and bitrophic effects of transgenic corn, expressing the gene from Bacillus thuringiensis (Bt-corn) that codes for the high expression of an insecticidal toxin (Cry1Ab), on the natural enemy species, Chrysoperla carnea (the green lacewing), was investigated. In these laboratory trials, we found prey-mediated effects of transgenic Bt-corn causing significantly higher mortality of C. carnea larvae. In further laboratory trials, we confirmed that the route of exposure (fed directly or via a herbivorous prey) and the origin of the Bt (from transgenic plants or incorporated into artificial diet) strongly influenced the degree of mortality. In choice feeding trials where C. carnea could choose between Spodoptera littoralis fed transgenic Bt-corn and S. littoralis fed non-transgenic corn, larger instars showed a significant preference for S. littoralis fed non-transgenic corn while this was not the case when the choice was between Bt- and isogenic corn fed aphids. Field implications of these findings could be multifold but will be difficult to assess because they interfere in very intricate ways with complex ecosystem processes that we still know only very little about. The future challenge in pest management will be to explore how transgenic plants can be incorporated as safe and effective components of IPM systems and what gene technology can contribute to the needs of a modern sustainable agriculture that avoids or reduces adverse impacts on biodiversity? For mainly economically motivated resistance management purposes, constitutive high expression of Bt-toxins in transgenic plants is promoted seeking to kill almost 100% of all susceptible (and if possible heterozygote resistant) target pest insects. However, for pest management this is usually not necessary. Control at or below an established economic injury level is sufficient for most pests and cropping systems. It is proposed that partially or moderately resistant plants expressing quantitative rather than single gene traits and affecting the target pest sub-lethally may provide a more meaningful contribution of agricultural biotechnology to modern sustainable agriculture. Some examples of such plants produced through conventional breeding are presented. Non-target effects may be less severe allowing for better incorporation of these plants into IPM or biological control programs using multiple control strategies, thereby, also reducing selection pressure for pest resistance development.  相似文献   
4.
5.
6.
The need to integratein situ conservation into the planning process is outlined, and the importance of vegetation survey to determine conservation priorities and to identify areas suitable forin situ conservation is stressed. A case is presented, drawing on experience gained in Zimbabwe, of how a botanical institute can become an integral part of biological conservation. The institute should consist of a herbarium, a botanical garden, a gene bank and a vegetation survey unit. The function of each section, how they interlink, and how they can be integrated are discussed.  相似文献   
7.
8.
The genetic structure of 65 chicken populations was studied using 29 simple sequence repeat loci. Six main clusters which corresponded to geographical origins and histories were identified: Brown Egg Layers; predominantly Broilers; native Chinese breeds or breeds with recent Asian origin; predominantly breeds of European derivation; a small cluster containing populations with no common history and populations that had breeding history with White Leghorn. Another group of populations that shared their genome with several clusters was defined as 'Multi-clusters'. Gallus gallus gallus (Multi-clusters), one of the subspecies of the Red Jungle Fowl, which was previously suggested to be one of the ancestors of the domesticated chicken, has almost no shared loci with European and White Egg layer populations. In a further sub-clustering of the populations, discrimination between all the 65 populations was possible, and relationships between each were suggested. The genetic variation between populations was found to account for about 34% of the total genetic variation, 11% of the variation being between clusters and 23% being between populations within clusters. The suggested clusters may assist in future studies of genetic aspects of the chicken gene pool.  相似文献   
9.
10.
The temporal variation of stoichiometry between consumed oxygen and oxidized carbon was investigated for the aerobic mineralization of leachates from aquatic macrophytes. Seven species of aquatic plants, viz. Cabomba piauhyensis, Cyperus giganteus, Egeria najas, Eichhornia azurea, Salvinia auriculata, Scirpus cubensisand Utricularia breviscapa, were collected from Òleo lagoon located in the floodplain of Mogi-Guacu river (São Paulo State, Brazil). After being collected, the plants were washed, oven-dried and triturated. In order to obtain the leachate, the fragments were submitted to an aqueous extraction (cold). Mineralization chambers were incubated at 20 °C containing leachates dissolved in water samples from Òleo lagoon to a final concentration of ca. 200 mg l–1on carbon basis. The chambers were maintained under aerobic conditions; the concentrations of the organic carbon (particulate and dissolved) and the dissolved oxygen were measured during approximately 80 days. Elemental analysis of the detritus and the concentrations of the remaining material (DOC and POC) were used to determine the amounts of mineralized organic carbon. The data were analyzed with first-order kinetics models, from which the daily rates of consumption (carbon and oxygen) and the stoichiometry (O/C) were determined. In the early phase of mineralization the O/C rates increased before reaching a maximum, after which they tended to decrease. For the mineralization of leachates from C. giganteus, S. auriculata and U. breviscapa, the decrease was relatively slow. For all substrata the initial values were smaller than 1, and ranged from 0.42 (S. cubensis) to 0.81 (C. piauhyensis). The maximum values were within the range from 0.58 (U. breviscapa) to 23.1 (E. najas) and at their highest 26th (C. piauhyensis) and 106th (C. giganteus) days. These variations are believed to be associated with the chemical composition of the leachates, with their transformations and alterations of metabolic pathways involved in the mineralization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号